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Abstract—With the popularity of the Python language, com-
munity developers create and maintain a lot of third-party
packages. APIs change frequently during the package evolving.
Package developers need keeping backward compatibility of APIs
to avoid breaking client code. Detecting breaking changes in
Python packages is challenging because of Python’s dynamic
features and flexible designs, such as dynamic typing, API aliases,
confusing public boundary and flexible argument passing. Despite
the language’s popularity, there have been few tools aiming to
detect breaking changes, and existing approaches lack sufficient
consideration of the mentioned challenges, resulting in imprecise
and incomplete detection. Briefly, we propose an API-model-
based systematic approach to address this problem. We design a
Python-specific API model and classify API changes in different
breaking levels. Based on the model, we obtain APIs with their
types by a robust hybrid analysis and detect graded changes by
checking constraints on API pairs. We implement a prototype,
AexPy. Thanks to the more comprehensive model and hybrid
analysis adopted, AexPy outperforms the state-of-the-art tech-
niques for Python with an 86.9% recall on a dataset of 61 known
breaking changes. Besides, AexPy detects 405 (manually verified)
high and medium breaking changes with a precision of 93.5% on
the latest versions of 45 packages. Specifically, in addition to 291
documented breaking changes, AexPy detects 114 undocumented
changes. We report 63 undocumented breaking changes to active
package developers, and 31 have been confirmed.

Index Terms—Python, application programming interface,
backward compatibility, breaking change

I. INTRODUCTION

The convenient standard library and the large active third-

party package1 ecology of Python provide tools suited to many

tasks (e.g., deep learning, automatic scripts, data processing)

and help developers to achieve their ideas efficiently. However,

during the evolution of a package, the package’s developer

may redesign data structures, change operations, or adjust

specification due to fixing bugs or providing new features.

Some of these changes may break client code, so called

“breaking changes” [2]. One common change case is appli-

cation programming interface (API) changes. APIs describe

the public interfaces of a package, which are contracts that

This work was supported by Natural Science Foundation of China (Grant
No. 62025202). The authors would like to thank the support from the Collabo-
rative Innovation Center of Novel Software Technology and Industrialization,
Jiangsu, China. Jun Ma is the corresponding author.

1We use the word “package” to represent “library”, to keep consistence
with Python’s naming habit, e.g., the Python Package Index [1].

clients rely on [3], so an API change could affect clients. In

the evolving of commonly used Python framework packages,

more than 40% API changes are breaking [4], which is larger

than static languages [5], [6]. These breaking changes break

backward compatibility, decrease the evolving stability, and

might cause potential bugs in clients.

Detecting breaking changes in Python packages is chal-

lenging because of Python’s dynamic features and flexible

designs, such as dynamic module importing, dynamic typing

[7], multiple API references, and flexible argument passing

[8], which altogether increase API complexity and introduce

a variety of API changes. Existing approaches, such as pidiff

[9] and PyCompat [4], lack sufficient consideration of these

challenges, which leads to imprecise and incomplete results.

In this paper, we propose an automatic and systematic

approach to detect API breaking changes in Python packages,

which helps Python developers to evolve packages reliably.

Our approach works in three major steps, 1) extracting APIs

from different versions of Python packages, 2) comparing

APIs to detect changes in different patterns, and 3) evaluating

backward compatibility of changes to grade breaking levels.

To do so, we propose a model of Python package APIs,

taking into consideration of primary features of Python (e.g.,

inheritance, argument passing, aliases, types). Specially, we

model the signature types of functions to address the chal-

lenge of dynamic typing. Based on the model, we combine

dynamic reflection with static analysis for API discovery and

information enrichment to obtain a detailed API description,

including types, parameters, aliases, and inheritance. Then

we systematically classify API changes into 42 patterns.

We design an entry pairing algorithm to adapt to Python’s

name resolution and a constraint-based checking algorithm

to detect changes automatically. Finally, for practicality, we

grade changes into four breaking levels according to the API

scope, change pattern, and change content, indicating different

severities of the changes. Specially, we use subset relationship

between types to model compatibility of type changes.

We implement the proposed approach in a prototype named

AexPy. We evaluate the effectiveness and efficiency of the tool

by applying it to detect known/unknown breaking changes of

different packages. Specifically, we compare AexPy with two

existing Python API breaking change detectors, pidiff [9] and
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PyCompat [4]. AexPy benefits from the detailed model and

hybrid analysis, and achieves almost 50% improvement on

recall with comparable time performance. Meanwhile, in latest

versions of 45 packages, AexPy detects high/medium breaking

changes in 43 packages with a manually verified precision of

93.5%. So far, we have received 50 responses of 63 reported

undocumented breaking changes, 31 of which are confirmed,

indicating our approach is practically useful in real world.

To summarize, this work makes three major contributions:

• We systematically design a Python package API model

and an API change classification. We grade changes into

four breaking levels to adapt to the flexibility of Python

APIs, and improve practicality of the model. (Section III)

• We propose an automatic and systematic approach for

API breaking change detection in Python packages. To

address challenges from Python’s dynamic features and

flexible designs, our approach extracts APIs through dy-

namic reflection and static analysis, and detects breaking

changes by a constraint-based checking algorithm. To

our best knowledge, we propose the first approach to

detect type breaking changes in Python packages, where

we check change compatibility by subset relationship

between statically constructed types. (Section IV)

• We implement a prototype AexPy, to detect breaking

changes in real-world packages. We evaluate AexPy on

collected 61 known breaking changes and latest ver-

sions of 45 packages. Our approach achieves 86.9%

recall, outperforming existing tools, and detects high and

medium breaking changes in the latest versions with

93.5% precision. Of the 63 reported changes, 31 have

been confirmed by package developers. (Section V)

The rest of this paper is organized as follows. Section II

introduces the background and challenges on breaking change

detection in Python packages. Section III depicts the design of

our API model and the classification of breaking changes. Sec-

tion IV details our detection method as well as our prototype

AexPy for detecting breaking changes. Section V describes our

evaluations, compared with existing approaches. Section VI

discusses strengths, limitations, and validity. After giving an

overview on related works in Section VII, we conclude this

paper and discuss future works in Section VIII.

II. BACKGROUND

A. API Backward Compatibility

For a software package, its APIs describe and prescribe the

“expected behaviors”, which contain descriptions about data

structures, and operations on such data [3]. Backward com-

patibility is a property that the system allows interoperating

with an older legacy system, e.g., dealing with inputs from the

old system. Modifying a system in a way that does not follow

this property is called “breaking” backward compatibility, i.e.,

breaking change [2]. Backward compatibility of a package

means that clients can use the new version of the package

in the same ways and get the same behaviors as the old

version, i.e., the package have compatible APIs on syntax and

semantic [2]. API breaking changes would cause compilation

or runtime problems in client code. For example, signature

changes in Java APIs would cause compilation errors, and

function removals in shared objects (dynamic link libraries)

for C/C++ could cause runtime linking errors.

B. Breaking Changes in Python Packages

Python is an interpreted, dynamically-typed, general-

purpose programming language, which consistently ranks as

one of the most popular programming languages [10]–[13].

Python supports multiple programming paradigms, includ-

ing procedural, object-oriented and functional programming.

Python Package Index (PyPI) [1], the official repository for

third-party Python packages, contains over 329,000 packages

by April 2022. These third-party packages cover a wide

range of functionality, such as automation, machine learning,

networking, scientific computing, web frameworks, and so on.

Breaking changes in Python packages happen frequently

and have extensive and expensive impacts. Zhang et al. [4]

investigated six Python frameworks and their clients, finding

that breaking changes occurred more frequently than Java, and

the changes affected more than half of the clients. They also

investigated 409 compatibility issues on GitHub, and showed

that 405 of them caused crashes at runtime, which showed the

extensive and expensive effects on breaking changes.

Detecting breaking changes in Python packages is different

and challenging compared to traditional programming lan-

guages. For example, Python developers often define instance

attributes by assignment statements in constructors instead of

the class body in C++/Java. Zhang et al. [4] found that the

Python APIs have different evolution patterns on parameters.

Peng et al. [14] studied language feature usage in 35 pop-

ular Python projects and found that inheritance, decorators,

positional-or-keyword parameters are frequently used.

CPython [15] is the standard Python implementation. We

learn about the Python language with CPython’s runtime

features and summarize following four challenges on API

breaking change detection in Python packages.

1) Dynamic Language Features: It is difficult to collect

API metadata statically because of Python’s dynamic language

features. Dynamic programming languages are a class of high-

level programming languages, which at runtime execute many

common programming behaviors that static programming lan-

guages perform during compilation (e.g., extending objects

and definitions). Python provides language-level mechanisms

such as decorators, metaclasses [8], class hooks to modify

classes dynamically. These dynamic features provide flexibility

to programmers while increasing difficulty of static analysis.

Besides, the dynamic type system in Python brings chal-

lenges to type compatibility checking. Firstly, CPython only

checks type compatibility at runtime, so type-related errors

occur during executing but cannot be easily detected during

programming, especially between two versions. Secondly,

Python has a complex type system and no enforcing type

declarations, introducing complex and various type changes.

Python allows duck-typing, i.e., an object is of a given type
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if it has all methods required by that type [8], and provides

abstract base classes (ABCs), which allow the classes, that do

not inherit from a class but are recognized as its subclasses [8].

Python introduces optional annotations [8], which are used by

static analyzers [16] for type checking in code, and are ignored

at runtime. This helps to obtain types, but it is still difficult to

compare types between versions for type change detection.
2) Complex API References: It is difficult to locate and dis-

tinguish APIs because Python allows referencing the same API

by different names. Python is an object-oriented programming

language with multiple inheritance and allows flexible object

definition, e.g., member adding or removing at runtime. Most

programming elements such as modules, classes, functions,

are objects, and can be stored in a variable or a member of

another object. One API object can be accessed by different

names and a member name can target to an API from another

module, even from another package (i.e., external APIs). The

feature is widely-used in popular packages, such as NumPy

[17], Tensorflow [18], to create short names for convenience,

while leading to a complex crossing API structure.
3) Fake Private Members: The boundary of public APIs is

fuzzy in Python. Python has no access modifiers, which makes

most objects accessible, leading to confusion on distinguishing

the scope of APIs. Python considers class members whose

names start with double underscores as private, and mangles

their names to prevent accessing such members [19]. But there

is no such mechanism for module members. Python devel-

opers often have their own private-naming conventions, e.g.,

members are private if their names start with an underscore

or if they belong to a specific module. Because Python has

no enforcing constraints on these conventions, clients can still

access such members just like normal members, which makes

it complex to cover these changes. Firstly, API aliases make it

complex to identify these members by conventions. Existing

approaches ignore API aliases, and may miss APIs with public

aliases. Secondly, these members usually have few uses in

clients indicated by the conventions, but their changes still

may break, while existing approaches ignore them.
4) Flexible Argument Passing: Python has a flexible argu-

ment passing design. Firstly, a default value can be specified

to make the parameter optional. Secondly, when calling a

function, arguments can be passed as either position or key-

word arguments [8]. Thirdly, functions can accept unbound

arguments. Python collects unbound positional arguments as a

list, like variadic functions in C++ [20] or Java [21]. Specially,

Python collects unbound keyword arguments as a dictionary.

Table I summarizes passing behaviors for parameter kinds.

TABLE I
PARAMETER KINDS [8]

Kind Behavior

Positional Pass by position
Keyword Pass by name

PositionalOrKeyword Pass by name if given otherwise by position
VarPositional List of all unbound positional arguments
VarKeyword Dictionary of all unbound named arguments

C. Limitations of Existing Approaches

To our best knowledge, there are two existing tools, pidiff

[9] and PyCompat [4], for breaking change detection in

Python. Pidiff [9] is a tool to help to enforce the usage of

semantic versioning (semver) [22] on Python packages. It

compares APIs provided by two versions of a pip-installable

[23] package, produces a report of detected changes, and warns

developers if these changes violate the semver. Pidiff extracts

APIs mainly by reflection and obtains instance attributes from

source code. Then it classifies and detects three categories of

23 change patterns, including module, object, and signature

changes. PyCompat [4] is a semi-automatic API compatibility

issue detector designed for clients of six popular Python

packages, based on its own API change detector. PyCompat

extracts APIs fully by dynamic reflection, and then classifies

and detects three categories of 14 change patterns, including

class, method, and attribute changes.

According to the challenges mentioned in Section II-B,

the existing approaches lack consideration of type changes,

class inheritance, API aliases, and fake private members.

Besides, pidiff ignores parameter default value changes, while

PyCompat ignores parameter kinds. PyCompat also ignores

nested modules, which leads to the lack of deep APIs and their

changes. In addition, PyCompat cannot be used directly for

the packages other than those six packages. These limitations

lead to imprecise and(or) incomplete detection results and

low availability. To address this problem, we need a more

comprehensive, systematic classification for breaking changes,

and a more automatic, robust detection tool.

III. BACKWARD COMPATIBILITY MODELING

This paper focuses on the backward compatibility of API

syntax, i.e., the way to use the package does not change.

We propose a model of Python package APIs, suited with

Python features mentioned in Section II-B. Then we classify

API changes and grade them into different breaking levels to

form a comprehensive and practical breaking change model.

A. Python API Model

According to the Python modular structure, we consider the

set E of APIs, i.e., the union of four sets M,C, F,A, repre-

senting modules, classes, functions, and attributes respectively.

For example, the API set corresponding to the code in Figure 1

is E = {D, f,A, x, t, init, g, B, h, i}.

1) Module: A module m ∈ M serves as an organizational

unit of code, with a namespace containing arbitrary objects

[8], such as classes, functions, attributes, or submodules, e.g.,

the module D. We model the membership by members(m),
which contains all members of m and their corresponding

member names, such as definitions of classes and functions,

references to external objects. In formal, members(m) is a

mapper in the form string → (E ∪ {⊥}), from the member

name to the target API (⊥ for external APIs). The module D in

the example contains one function, two classes, and a reference

to an external class in typing, i.e., members(D) =
{“opt” → ⊥, “f” → f, “A” → A, “B” → B}.
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1 # File: D.py
2 from typing import Optional as opt
3 def f(a, /, b = []): pass
4 class A:
5 x: int = 0
6 t = f
7 def __init__(self): self.y: "int" = 0
8 @classmethod
9 def g(cls, *, c: opt['abc']=None): pass

10 class B(list, A):
11 def h(self)->'opt[A]': return self
12 @staticmethod
13 def i(*ar, **kw)->str: return str(kw['v'])

Fig. 1. API Example

2) Class: A class c ∈ C is a template for creating user-

defined objects, which contains method definitions operating

on instances of the class [8], e.g., A,B. We describe its

membership by members(c) which ignores base classes’

members, e.g., members(B) = {“h” → h, “i” → i}. We

model inheritance in three properties.

Base Class: the set of classes which c explicitly inherits from,

e.g., bases(B) = {list, A}.

Abstract Base Class: the set of widely-used builtin ABCs

[24], which c can be recognized as, e.g., abcs(B) =
{Iterable, Sequence} because list supports these ABCs.

Method Resolution Order: an ordered class tuple for

searching a method during lookup [8], affecting APIs

indirectly, e.g., mro(B) = (B, list, A, object).

3) Function: A function f ∈ F is the main part of package

interfaces, e.g., f, g, h, i. We focus on its signature including

the parameters and return type, e.g., paramaters(f) =
{a, b}, return(i) = str. We consider three scopes, i.e., where

the function is bound, e.g., scope(f) = scope(i) = Static,

scope(g) = Class, and scope(h) = Instance. Specifically,

we treats the functions defined inside a class, i.e., methods,

whose first parameter is self, like h, as instance scope,

following the widely-adopted convention [8].

A parameter is a named entity in a function definition that

specifies an argument that the function can accept [8], e.g., the

parameters a, b, self, c, ar, kw. For a parameter p, we focus

on its name, position, optionality, literal default value, type,

and especially, passing kind to model argument passing, e.g.,

name(a) = “a”, position(b) = 2, optional(c) = True,

default(c) = None, kind(a) = Positional, and kind(kw) =
VarKeyword. The type of parameter c is a little complex, so

we explain it in Section III-A5. We find that many developers

access VarKeyword parameter with specified keywords in

the function body, e.g., the parameter v of the function i, so

we introduce a new kind of parameters VarKeywordCandidate,

indicating the keywords accessed from VarKeyword.

4) Attribute: An attribute a ∈ A is a value associated

with an object and is referenced by its name using dotted

expressions [8], e.g., x, y. We focus on its type and scope,

e.g., type(x) = int, scope(x) = Class, and scope(y) =
Instance, because y is defined in the constructor of A, so y

can only be accessed by the instances of A, instead of A itself.

5) Type: In the model described above, we consider types

of parameters and attributes. Type annotations [8] help to deal

with dynamic typing, but they depend on the context, which

cannot be used between versions, e.g., the annotation of h is

a string containing a reference opt from the context, and it

has the same meaning as Union[A, None], although the

strings are different. So we design a simple, portable type

model, covering main Python types, and use it to check type

change compatibility described in Section IV-C3. In our type

model, a type T is a set of the objects of that type. There are

following three kinds of atomic types, e.g., both type(x) =
int and return(i) = str are class types.

Literal: specific string, boolean, number literals, e.g., “abc”.

Class: types of a class for non-specific values, e.g., int, A.

Special: none, any, and unknown (uncovered types).

There are four kinds of composite types, which combine

other types in a specific semantic structure. For example, the

annotation of the parameter c is opt[’abc’], in which

opt references Optional. It means c accepts the string

literal “abc” or None, so we model it by a sum type,

type(c) = “abc” + none. Then we can judge that it is

structurally identical to Union[None, ’abc’].

Sum: T1+T2+ · · ·+Tn, indicating objects that are of at least

one of T1, . . . , Tn.

Product: T1 × T2 × · · · × Tn, indicating objects which are

composites of n ordered objects, and the i-th is of Ti.

Callable: Targs → Tret, indicating callables that accept Targs

and return Tret, e.g., strlen() is of str → int.

Generic: Tbase(T1, T2, . . . , Tn), indicating a generic type

instance, with base type Tbase and type arguments

T1, . . . , Tn, which is used for array and collection types,

e.g., list(float),dict(str, int).

6) Alias: To model Python’s complex API references, we

use the qualified name of e’s definition as the identifier of

e, e.g., id(f) = “D.f” and id(g) = “D.A.g”, and treat all

references targeting to e, except for the definition, as the

aliases of e, noted as aliases(e). For example, the member

named “t” in the class A references the function f in the

module D, so “D.A.t” is an alias of f .

B. Change Classification

According to our proposed API model above, we classify

changes into 17 coarse-grained patterns based on three forms

of changes (additions, removals, and modifications) that occur

directly on six categories of APIs, as shown in Table II.

We then refine these change patterns into 42 fine-grained

patterns2 to give a more detailed classification. For class, we

partition inheritance changes by its cause, i.e., base class,

ABC, and MRO changes. For functions and attributes, we par-

tition their additions and removals by their scope to distinguish

instance members. For parameters, we partition their additions

and removals by their kinds and optionality, and partition

2Due to space limitations, we do not include all the 42 patterns, which are
available at https://aexpy.netlify.app/change-spec.
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TABLE II
API CHANGE PATTERN CLASSIFICATION

Module Class Function Attribute Parameter Alias

Addition AddModule AddClass AddFunction AddAttribute AddParameter* AddAlias

Removal RemoveModule RemoveClass RemoveFunction RemoveAttribute RemoveParameter RemoveAlias

Modification -† ChangeInheritance ChangeReturnType ChangeAttributeType ChangeParameter ChangeAlias

* Italic change patterns contain breaking changes.
† There are no change instances of module modification changes under this classification.

their modifications by its cause, as shown in Figure 2. For

alias changes, we distinguish external references by the API

location. It needs to note that these API changes are different

from code changes, because one single code change can lead

to multiple API changes, e.g., a parameter addition at the first

place causes Add&MoveParameter changes.

ChangeParameter

ChangeType
type? ChangeDefault

modify?

AddDefault
add?

RemoveDefault

remove?

default

value?

Move
position?

Fig. 2. Refined Classification for ChangeParameter

C. Breaking Grading

According to our observation of repositories and issues, we

set up a heuristic breaking level (including Compatible, Low,

Medium, and High) to each change, indicating the change’s

severity, i.e., ranges of impact situations. Because of the

weak constraints on Python APIs and the lack of compilation

type checking, developers have difficulties on restricting client

usage. Multiple breaking levels help developers to focus

on important changes while getting full results, to improve

practicality and keep comprehensive.

1) Compatible: Changes that have no breaking impact on

old programs are compatible, such as AddClass and AddAlias.

2) Low: We grade all breaking changes on fake private

APIs or aliases of external APIs to low level, to reduce

disturbance, because clients usually do not use these APIs

directly although they can, and the package developers may

provide no compatibility guarantees on these APIs. We specify

the details of determining private APIs in Section IV-C1.

3) Medium: We grade changes which indirectly breaks

usability of public APIs to medium level, because the breaking

situation is conditional and rare. For example, unlike on

normal functions, parameter changes on class/instance meth-

ods can lead to inconsistency during overriding. Because of

Python’s overriding design [25], when a subclass overrides

the method, the new method copies the signature and replaces

the original method. When an signature change occurs on the

original method, the signature in the subclass is different from

the base, which breaks the overriding convention.

Type incompatibility changes are another important pattern

of medium breaking changes. Because of duck-typing, the

errors caused by these changes, occur only when the parameter

or attribute is accessed or explicitly type-checked in function

logics, instead of function invocation. We specify the details

about type compatibility in Section IV-C3.

4) High: We grade changes which directly break usability

of public APIs to high level. For example, RemoveModule and

AddRequiredParameter are high breaking because programs

that access the module or call the function will crash because

of failing to find modules, or missing required arguments.

IV. BREAKING CHANGE DETECTION

According to our API model and breaking change classifi-

cation, we propose an automatic method to detect breaking

changes, and implement a prototype, AexPy. As shown in

Figure 3, AexPy takes two versions of a package as inputs,

processes package releases through four stages, and outputs

graded API changes. AexPy prepares the distributions and

metadata of the versions when preprocessing, and the sub-

sequent stages are described in the following subsections.

A. API Extracting

As mentioned in Section II-B, Python package API extrac-

tion is non-trivial. AexPy combines dynamic reflection and

static analysis to address those challenges. Specifically, AexPy

first discovers and extracts APIs dynamically by reflection to

handle dynamic behaviors caused by dynamic features, and

then enriches API information by static analysis.

1) Dynamic Reflection Analysis: Python’s standard library

provides reflection tools to access metadata of runtime objects.

Python finds modules by the corresponding directory structure

as default [26]. Modules importlib and pkgutil support

standard import mechanisms [27], [28], and module inspect
provides several useful functions to inspect live objects [29].

AexPy discovers all modules in the package and tries to

import them to collect APIs. First, AexPy installs the package

by the Python official package manager pip [23] into an

available environment with the matched Python interpreter

version. Then through a top-down and breadth-first search

from the package’s top-level modules, AexPy discovers all

accessible APIs, handles exceptions to improve robustness,

and generates identifiers by builtin location attributes [26]

of API objects. Finally, AexPy collects metadata of every

detected API object by the inspect module, and then

generates a collection of APIs in the form of our model.

The dynamic extraction method discovers API definitions

and their references precisely. Dynamic importing and runtime
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Package

Version1

Version2

Preprocessing

Preprocessing

API Extraction

API Extraction

API Difference
Backward

Compatibility
Evaluation

Breaking Changes

Fig. 3. AexPy’s Workflow

reflection addresses object assignments and API modification

from decorators. AexPy follows the Python standard to access

a package, simulating the client usage, so AexPy discovers

what clients can actually access. For API referencing, because

the same API referenced by different names is the same object

at runtime, AexPy obtains the actual target object of each alias

by reflection, identifies these objects by their unique definition

locations and then builds a precise API reference relationship.

2) Static Program Analysis: Reflection provides basic in-

formation about accessible APIs, but it learns little about func-

tion logics, e.g., instance attributes, and candidate keyword

parameters, defined in function bodies. Reflection also reads

type annotations, but cannot recognize the same type from

different annotations. So we map dynamically-extracted APIs

to source code by their definition locations, and introduce

static analysis to enrich attributes, parameters, and types.

For instance attributes, AexPy traverses all attribute assign-

ment statements [30] on self parameter, i.e., the instance

object, from the abstract syntax trees (ASTs) of constructor

methods to detect instance attributes. For candidate key-

word parameters, AexPy uses a simplified AST-based, flow-

insensitive, intra-function alias analysis to find all aliases of the

VarKeyword parameter (if exists). After that, AexPy detects

all access operations on the parameter and its aliases, including

subscripts, dictionary methods, to find candidate parameters.

There are multiple approaches to obtain types, and AexPy

relies on a popular Python static type checker, Mypy [16],

because Mypy has a type system including generics, callable

types, and so on, and it supports bidirectional type inference,

which partly handles absence of type annotations. The types

from Mypy cannot be used directly for compatibility checking

between versions, because their contexts in Mypy are bound

with the specific version, such as class metadata and type

aliases. AexPy hooks Mypy to get its internal type representa-

tion and then maps the types of APIs (type(e) = ⊥ if Mypy

fails) to our model, to detach from Mypy’s environment.

B. API Difference

We design a difference algorithm to detect the 42 API

change patterns. AexPy first pairs the corresponding APIs

between the two versions and then checks the API pairs against

the defined constraints corresponding to each change pattern.

1) API Pairing: API pairing contains two parts, API entry

pairing, and function parameter pairing. For an API e from

the old version, API entry pairing finds the API e′ from the

new version, such that e′ can be accessed by id(e) or one

of aliases(e). Specifically, AexPy first finds e′, which has

the same identifier and category (e.g., module, class) of e. If

no such e′, AexPy then locates the aliased API by resolving

id(e) through a series of member accessing in the new version.

Specially for methods defined in a class c, AexPy finds the

first existing method with the name through mro(c) to handle

inheritance. This pairing algorithm simulates the actual name

resolution at runtime to address multiple aliases. If still no

such API (e′ = ⊥), AexPy concludes that e is removed in

the new version. AexPy pairs ⊥ to unpaired APIs of the new

version. For paired functions, parameter pairing further finds

the parameters between two versions, that accept the same

arguments in use cases, to address flexible argument passing.

Specifically, AexPy distinguishes passing kinds, and pairs the

position, keyword, and variadic parameters separately.
2) Constraint-Based Detection: To implement automatic

detection, we associate each change pattern with a logical

expression as its constraint to check whether the change

occurs on API pairs (e, e′) or parameter pairs (p, p′), including

testing whether the pair contains ⊥ to detect additions and

removals, and comparing properties on non-⊥ pairs to detect

modifications. Table III shows some selected typical checking

constraints. We take following change patterns as example to

explain how we design constraints.

RemoveFunction The first two clauses (e ∈ F ∧ e′ = ⊥)

means the function e is removed, because of no paired

entry in the new version, and the last clause (scope(e) =
Static) enforces the function is not bound to any objects,

distinguishing this pattern from RemoveMethod.

RemoveBaseClass The first clause (e, e′ ∈ C) enforces the

class exists in both versions, and the second clause

(bases(e) �⊆ bases(e′)) means there are some base

classes removed in the new version.

MoveParameter The first two clauses (p �= ⊥ ∧ p′ �= ⊥)

enforce the parameter p exists in both versions, and the

last clause (position(p) �= position(p′)) means the

position of p is different between the two versions, which

means p is moved.

RemoveAlias The first clause (e, e′ ∈ M ∪ C) means e, e′

exist and are modules or classes, so they have members.

The existential quantified clause enforces alias removals.

Specifically, t ∈ E means t is not external, and n ∈
aliases(t) means n is an alias of t. The last clause

((n, t) ∈ (members(e) − members(e′))), where the

difference between two member sets forms the removed

members of e, enforces the alias n of t is removed.

C. Backward Compatibility Evaluation

According to our breaking grading, AexPy evaluates change

levels by following three steps.
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TABLE III
TYPICAL API CHANGE PATTERN CONSTRAINTS

Pattern Constraint Level for Public

AddModule e = ⊥ ∧ e′ ∈M Compatible
RemoveFunction e ∈ F ∧ e′ = ⊥ ∧ scope(e) = Static High

RemoveBaseClass e, e′ ∈ C ∧ bases(e) �⊆ bases(e′) High

ChangeReturnType e, e′ ∈ F ∧ return(e) �= return(e′) Medium*

AddRequiredParameter p = ⊥ ∧ p′ �= ⊥ ∧ ¬optional(p′) High
MoveParameter p �= ⊥ ∧ p′ �= ⊥ ∧ position(p) �= position(p′) High

RemoveVarKeywordCandidate p �= ⊥ ∧ p′ = ⊥ ∧ kind(p) = VarKeywordCandidate Medium
RemoveAlias e, e′ ∈M ∪ C ∧ (∃(n, t), t ∈ E ∧ n ∈ aliases(t) ∧ (n, t) ∈ (members(e)−members(e′))) High

RemoveExternalAlias e, e′ ∈M ∪ C ∧ ∃n, (n,⊥) ∈ (members(e)−members(e′)) Low

* The level of type changes depends on type compatibility, described in Section IV-C3.
† Due to space limitations, we do not include all the constraints on 42 change patterns, which are available at https://aexpy.netlify.app/change-spec.

1) Filtering Private APIs: The first step is filtering “pri-

vate” APIs and aliases of external APIs for low level changes.

AexPy follows the widely-adopted convention: the name of

“private” members starts with underscores. Specifically, AexPy

checks all access paths of the API, and treats it as private if

all its aliases contain names starting with underscores.

2) Grading by Patterns: After filtering changes on private

APIs out, some patterns have clear severities to grade, e.g.,

the third column shown in Table III.

3) Grading by Contents: Some medium breaking changes

are conditional breaking according our change classification,

so we go deep into the change content to grade. For ex-

ample, parameter changes such as AddOptionalParameter,

are compatible for normal functions, but would introduce

inconsistency during overriding for class/instance methods, as

mentioned in Section III-C3. So AexPy grades these changes

to medium level if they occur on class/instance methods, i.e.,

scope(f) �= Static, indicating its limited breaking impact.

Type changes are also unable to grade by their patterns, e.g.,

parameter type changes from str to str+ int are compatible

while the inverse are not. We model the compatibility by the

subset relationship between changed types, defined recursively

on structures, shown in the following inference rules, in which

“S” and “T” are name prefixes for types.

ANY:
T ⊆ any

SUM:
i ∈ [1, n]

Ti ⊆ T1 + · · ·+ Tn

CLASS:
S ∈ bases(T ) ∪ abcs(T ) ∪mro(T )

T ⊆ S

PRODUCT:
T1 ⊆ S1 . . . Tn ⊆ Sn

T1 × · · · × Tn ⊆ S1 × · · · × Sn

CALLABLE:
Targs ⊆ Sargs Sret ⊆ Tret

Targs → Tret ⊆ Sargs → Sret

GENERIC:
Tbase ⊆ Sbase T1 ⊆ S1 . . . Tn ⊆ Sn

Tbase(T1, . . . , Tn) ⊆ Sbase(S1, . . . , Sn)

Taking the CALLABLE rule for example, which rules com-

patibility of signature type changes. A function type change

from Targs → Tret to Sargs → Sret is compatible, if and only

if both its parameter and return type changes are compatible,

i.e., Targs ⊆ Sargs, which means it still accepts objects of

the old type Targs
3 and Sret ⊆ Tret, which means it does not

return objects of new types other than Tret.

V. EVALUATION

We evaluate AexPy’s effectiveness based on following re-

search questions.

RQ1 (Recall) Does AexPy detect more known breaking

changes than existing approaches?

RQ2 (Practicality) Can AexPy find potential unknown

breaking changes?

RQ3 (Efficiency) What is the time performance of AexPy?

We compare AexPy4 with pidiff [9] and PyCompat [4] on

recall and efficiency. We wrap pidiff and parse its outputs for

manually checking. We reimplement PyCompat and adjust its

API extraction approach based on its open-source repository

[31] to analyze packages besides the six framework packages

it is designed for. Both pidiff and PyCompat need package

metadata, so we share results from AexPy’s preprocessing as

their inputs. We run the three tools in containers limited in 50

GBs and one hour for each version pair on an Ubuntu 18.04

host with 12 CPUs of 3.8GHz and 64 GBs of RAM.

A. Detecting Known Breaking Changes

We collect API backward compatibility issue reports and

pull requests, solved between January 2021 and May 2022,

from GitHub by keyword searching. Selected keywords in-

clude: 1) general keywords like “breaking change”, “back-

ward compatibility”, and 2) keywords about errors/exceptions

caused by breaking changes, e.g., “TypeError”, “ModuleNot-

FoundError”, “AttributeError”, indicating exception types, as

well as “missing parameter”, “unexpected keyword parameter”

in exception messages. From the searched results, we read

the source code of the breaking version to ensure it is an

actual API breaking change, and determine what the exact

change is. We also search documented API breaking changes

in the changelogs of latest two major versions from 15 popular

packages (according to downloads and GitHub stars). Finally,

we collect 61 API breaking changes in different categories

3This rule simplifies parameter list compatibility because type checking
occurs only on a single parameter after parameter pairing.

4AexPy is available at https://github.com/StardustDL/aexpy.
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TABLE IV
RESULTS ON KNOWN BREAKING CHANGES

Tool Module (2) Class (4) Function (6) Attribute (5) Parameter (34) Alias (4) Type(6)* Total (61)

pidiff 0 1 1 1 16 4 0 23
PyCompat 0 1 2 0 17 2 0 22

AexPy 2 4 6 4 29 4 4 53

* We filter type changes specially out from function, attribute, and parameter changes, to show our effectiveness on type changes.

from 45 open-source packages5 lying in different areas, such

as web, utility, artificial intelligence.

For each known breaking change, we execute the three

tools on the corresponding version pair. AexPy crashes on 5

changes, while pidiff crashes on 31, and PyCompat crashes on

13, mainly caused by exceptions on installing and importing.

We read the results manually to check whether the tools detect

the changes. Table IV presents the number of the breaking

changes detected by each tool in each category.

AexPy detects the most known breaking changes in all

categories and covers all the known changes detected by other

tools. AexPy detects 86.9% (53/61) changes (including 2 low

level changes), increasing by almost 50% compared to pidiff

and PyCompat. Especially, AexPy detects 66.7% (4/6) type

changes while no existing tool detects. Restricted to the known

changes for which none tool crashes, AexPy finds 6 more than

pidiff and 23 more than PyCompat. The high recall shows our

approach detects more breaking changes.

B. Finding Unknown Breaking Changes

To check the usefulness of AexPy for actual development

situations, we evaluate AexPy on the latest versions (against

their previous ones) of the same 45 selected open-source

packages used in the previous evaluation.

Except compatible and low level changes, AexPy detects

433 changes (312 high, 121 medium) on those version pairs.

Among them, 405 changes (294 high, 111 medium) are

manually checked as true, with a precision of 93.5%. We

read changelogs of those versions (if exists) and mark 291

documented changes. The rest 114 of breaking changes are un-

documented, and we report 63 changes among them to active

package developers. AexPy crashes on bentoml [33] 0.13.1

and clyngor [34] 0.4.2. Table V presents the results on the

rest 43 packages, including counts of detected high/medium

changes and confirmations on reported issues.

AexPy finds meaningful results on most packages. In 14

packages, AexPy finds no breaking changes, in which 13

versions are patch updates, and the rest one version [36] also

keeps its API syntax. In the other packages, most detected

breaking changes are documented in changelogs, although

most changelogs are high-level with only brief notes on API

changes, while AexPy gives details.

AexPy detects undocumented breaking changes confirmed

by developers, indicating our approach is useful on checking

5Collected data are available at https://aexpy.netlify.app/data. We exclude
Tensorflow [18] and PyTorch [32], which cause importing crashes in non-
specific analysis environments because of their native dependencies.

TABLE V
RESULTS FOR HIGH/MEDIUM CHANGES ON LATEST VERSIONS

Package Find TP FP Doc. Rep.* C/I* #Issue

Flask & Other 13† 0
trio 0.20.0 2 0 2

python-dateutil 2.8.2 12 0 12

asyncpg 0.25.0 1 1 0 1 0
urllib3 1.26.9 1 1 0 1 0
pooch 1.6.0 2 2 0 2 0

jmespath 1.0.0 3 3 0 3 0
Django 4.0.4 4 4 0 4 0
pystac 1.4.0 4 4 0 4 0

PyYAML 6.0 4 4 0 4 0
scikit-learn 1.0.2 4 2 2 2 0
harvesters 1.3.6 5 5 0 5 0

PyJWT 2.3.0 6 6 0 6 0
humanize 4.0.0 9 9 0 9 0

Jinja2 3.1.2 13 12 1 12 0
captum 0.5.0 17 17 0 17 0
ao3-api 2.2.1 20 20 0 20 0

xarray 2022.3.0 24 24 0 24 0
pecanpy 2.0.2 27 27 0 27 0

appcenter 3.0.0 51 51 0 0 0‡

gradio 2.9.4 1 1 0 0 1 1/0 #1169
diffsync 1.4.3 3 3 0 0 3 3/0 #108

rpyc 5.1.0 6 6 0 3 3 3/0 #488
evidently 0.1.49.dev0 9 9 0 0 9 9/0 #216
prompt-toolkit 3.0.29 12 12 0 3 9 - #1627

tornado 6.1 20 12 8 8 4 0/4 #3138
pybinance 1.0.16 23 23 0 19 4 - #1182
astroquery 0.4.6 34 34 0 19 15 2/13 #2397
pyoverkiz 1.4.0 41 41 0 32 9 9/0 #477
stonesoup 0.1b8 75 72 3 66 6 4/2 #631

Total 433 405 28 291 63 31/19 -

* Rep. column represents the count of reported changes. C/I column repre-
sents the count of confirmed/ignored changes (dash “-” for no reply).

† We omit the items where AexPy detects no breaking changes: Flask 2.1.2,
betfairlightweight 2.16.4, catkin-tools 0.8.5, click 8.1.3, docspec 2.0.1,
meshio 5.3.4, paramiko 2.10.4, requests 2.27.1, resolvelib 0.8.1, Scrapy
2.6.1, markupsafe 2.1.1, numpy 1.22.3, matplotlib 3.5.2, pandas 1.4.2.

‡ We do not report as appcenter [35] is inactive and has no changelog.

backward compatibility in actual situations. We group the

63 high/medium breaking changes into 10 issues by their

packages and report them. So far, we have received 8 replies

involving 50 changes from developers, in which 31 changes

are confirmed. The package developers agreed that the rest

19 changes are true but they ignored them because the related

APIs (although not recognized as “private”) are actually imple-

mentation details with no compatibility guarantees according

to developers’ designs. For example, a developer from tornado

[37] replied “I’m sorry you had a frustrating experience due

to these changes, but these were all undocumented implemen-

tation details that had no guarantees of compatibility.”
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C. Time Performance

To evaluate efficiency, we run the three tools under the

same environment on every pair of adjacent versions from

selected 45 packages. We ignore the versions which only

support end-of-life Python, i.e., Python 3.6 and before [38].

We measure execution time by Python’s timeit module [39],

and calculate average execution durations for packages with

different numbers of code lines. Table VI presents the result.

TABLE VI
AVERAGE TIME (S) ON PACKAGES WITH DIFFERENT LOCS

0-5k (14) 5-10k (12) 10-100k (14) 100-500k (5)

pidiff 66.4 89.4 216.6 231.3
PyCompat 59.7 47.1 113.5 115.8

AexPy 94.6 103.2 269.5 489.3

The results show that the time performance of the three

tools is in the same order of magnitude. AexPy takes more

time because it detects deep nested modules and introduces

static analysis with type checking to improve analysis results.

VI. DISCUSSIONS

A. Strengths

There are three major advantages and we discuss how our

approach addresses the challenges in Section II-B as follows.

1) More Detailed API Descriptions: AexPy extracts APIs

more precisely according to our Python-specified API model.

To address dynamic language features, we find APIs and

handle dynamic behaviors by dynamic reflection. Then we

extract types by static analyzers, bind types to dynamic-

extracted APIs, and design inference rules to detect type

changes. To address flexible argument passing, we include

parameter kinds in our model, and match parameters by kinds

in our diff algorithm. Taking two changes which only AexPy

detected from our datasets as example, diffsync [40] changes

the return type of Diff.action() from str to Enum
[41], and Flask [42] removes a candidate keyword parameter

encoding in json(), noted in its changelog [43].

2) More Comprehensive Change Detection: AexPy clas-

sifies and detects changes systematically, and then grades

changes for practicality, which helps to cover more changes.

To address complex API references, we use dynamic import

and reflection to find precise API aliases, and design the

pairing algorithm to detect alias-related changes. To address

fake private members, we find and diff accessible APIs,

and then use API aliases to filter fake private members

more precisely by a customizable convention and grade their

changes to low level to reduce disturbance in a practical way.

For example, Scrapy [44] removes the constructor defined in

FileDownloadHandler, and uses its parent’s constructor,

which causes a parameter settings removal, noted in its

changelog [45]. The entry pairing helps AexPy to detect this

hidden change. Polyaxon [46] uses a fake private instance

attribute XAxis._gridOnMajor in upstream matplotlib

[47], and matplotlib removes this attribute in version 3.3.3,

causing polyaxon crashed [48]. AexPy detects this change as

a low breaking change while the other tools ignore it.

3) More Robust Analysis: AexPy accesses APIs like a client

and isolates importing exceptions to reduce runtime failures

and improve robustness and applicability.

B. Limitations

We investigate causes of the 28 false positives in Sec-

tion V-B, and discuss limitations of our approach.

1) Imprecise API Model: We design our Python-specific

API model to cover main Python features and important API

changes, while the model can be further refined to get more

precise API descriptions and change patterns. For example, we

treat generators, and asynchronous functions as normal func-

tions, and cover their specific changes by ChangeReturnType,

which can be refined according to their specific behaviors for

more precise change patterns. In addition, our type model

covers frequently-used types, and can be extended, e.g., bound

type variables in generic types, to cover more type changes.

2) Imprecise Breaking Levels: Considering the complexity

of API change impact in Python, we introduce heuristic

breaking grading according to our knowledge from related

issues and existing studies, for a trade-off between soundness

and practicality, but the breaking severity may be subjective

for different developers. Taking fake private members as an

example, although AexPy follows the widely-used convention

and grades their changes to low level, developers would have

different naming strategies and compatibility guarantees. In

practice, this can be fixed by developer-customized filtering

strategies for APIs and changes.

3) Imprecise API Extraction: The limitations on dynamic

reflection and static analysis cause imprecise APIs extraction,

resulting in false positives and false negatives. There are

still some cases which are not well-covered because of the

various runtime behaviors. For example, developers can import

modules conditionally, hook member resolving, or change

members by the builtin mechanisms, such as setattr [49].

For functions, platform-dependent or native wrapper packages,

e.g., NumPy [17], usually consist of compiled C code, which

lack metadata like annotations and cannot be analyzed by a

Python static analyzer. For parameters, decorators can hide

parameters of the wrapped functions, and arguments for the

VarKeyword parameter can be modified in batch. For types,

if there are no type annotations, Mypy gains little information

and AexPy works conservatively. Although we have addressed

some of these problems by our hybrid analysis, it is still

difficult to cover such flexible behaviors adequately.

C. Threats to Validity

We collect known breaking changes from GitHub issues

searched by self-defined keywords, which may limit the diver-

sity and representativeness of the collected issues. To mitigate

the threat, we introduce changelogs of popular packages as

another data source. As the result, the collected changes fit

with the intuition that parameter changes are the most common

and distribute in different categories, which demonstrates
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the generality of our change dataset. The selected packages

distribute in different sizes (from 0.5k to 440k LOCs with

average 36k), and popularity (from 8 to 64k stars on GitHub

with average 9.8k), which avoids biased selection.

Our evaluation involves manual efforts, which might be

subjective and biased. To reduce the threat, in the experiment

on known changes, we judge AexPy more strictly than the

other tools to get a conservative result. Specifically, AexPy

needs to find the exact change to get a positive point, while

other tools only needs to report a closely related change. In the

experiment on unknown changes, we generate code snippets

automatically for simple changes, e.g., RemoveModule, and

manually for complex changes, to trigger them. We provide

the snippets in reported issues as a minimal reproduction.

VII. RELATED WORKS

A. Finding Breaking Changes & Their Impacts

Breaking changes are common across programming lan-

guages and ecosystems [5], [50], [51]. Zhang et al. [4] studied

six popular Python frameworks and found that more than 40%

API changes are breaking. Mezzetti et al. [50] studied that at

least 5% of JavaScript packages have experienced a breaking

change in a non-major update. Brito et al. [52] studied

the reasons Java developers intentionally break APIs. Many

developers want to adopt the semantic versioning strategy, but

do not trust that their dependencies adhere the guidelines [53].

For static languages, there are numerous tools that help

library developers to detect breaking changes [54], because the

explicitly typed APIs and strict grammars make it much easier.

UMLDiff [55] uses reverse engineering on class UML models

to detect structure changes in Java classes. APIDiff [56] parses

Java source code to extract APIs, and classifies breaking

changes cooperated with RefDiff [57]. Revapi [58], SigTest

[59], Clirr [60], and japicmp [61] analyze Java APIs and

track API changes. DeBBI [62] detects backward behavioral

incompatibilities between Java libraries and client projects.

For C/C++ libraries, abi-compliance-checker [63] extracts the

symbol table and the virtual function table in object files to

check binary compatibility and source compatibility. Besides

compiled binaries, Ponomarenko et al. [64] obtained function

signatures and type definitions from header files to detect a

broad spectrum of backward compatibility problems.

In recent years, approaches about breaking change detection

of dynamic languages have been proposed. Pidiff [9] is a

checker for semantic versioning on Python packages, and

it compares API information recursively on APIs’ structure

to detects changes. Zhang et al. [4] extracted APIs from

Python frameworks by reflection to detect class, parameter,

and attribute changes. They implemented a tool PyCompat

using the manually filtered changes to detect misuses of

changed APIs in client code. PyCT [65] extracts fine-grained

code changes from the commit history of open-source Python

projects. PyCT [65] and PYSCAN [14] give some evidences

about the usage of dynamic language features. PyDFix [66]

and V2 [67] detect breaking changes causing client build

errors to fix build environments. Mezzetti et al. [50] proposed

NoRegrets+ based on type regression testing to find type-

related breaking changes in Node.js libraries. They applied

dynamic analysis, leveraging automatic test suites, learned

models of library interfaces and compared the models before

and after an update. To our knowledge, existing syntax-based

diff tools [68] cannot handle inheritance and API aliases well,

and other languages’ API diff tools are not well-suited for

Python. In comparison, AexPy focuses on Python, covers

important Python features and considers more change patterns,

especially type incompatibility changes in Python.

B. Python API Extraction & Analysis

Besides pidiff and PyCompat, there are other studies ex-

tracting Python package APIs for different purposes. PyCRE

[69] detects module and attribute APIs by dynamic importing

and identifies environment dependencies for Python scripts

according to the dependency knowledge base. SnifferDog [70]

collects APIs of Python packages by static analysis, to restore

execution environments for Jupyter Notebooks. Python API

document generators extract document strings from source

code, such as Epydoc [71], and the popular Sphinx [72], which

supports the official Python documentation. In comparison,

API extraction in our work covers more detailed APIs and

produces more precise results because of our hybrid analysis.

Python static analysis tools help to analyze APIs. Static

type checkers, such as Mypy [16], Pytype [73], Pyright [74],

Pyre [75], infer types and detect type conflicts in source code

according to annotations. Pylint [76] is a static code analysis

tool for programming errors, such as undefined attributes.

PyCG [77] analyzes assignment relations between program

identifiers of functions statically to generate a call graph.

Monat et al. [78] reused off-the-shelf analysis to process

multilanguage analysis of Python programs with C extensions.

VIII. CONCLUSION

We propose a systematic approach to detect API breaking

changes in Python packages. Via modeling package APIs,

classifying and grading breaking changes, we address the chal-

lenges about dynamic features and multiple API references by

a hybrid extraction method, and address the challenges about

argument passing and fuzzy public scope by a constraint-based

change detection and grading method. Compared to existing

approaches, experiments on known breaking changes show our

prototype tool, AexPy, has a high recall, strong robustness,

and comparable time performance. On 43 real-world packages’

latest versions, AexPy detects documented and undocumented

breaking changes with a high precision, and we have received

31 confirmations on reported changes, which demonstrates the

effectiveness and practicality of our approach.

In future works, we plan to enhance type analysis, cover

more features to improve detection, and make AexPy more

useful. We plan to make the reports more clear and easier to

be used by developers, e.g., grouping changes by their root

cause. We also plan to study more applications of the built

knowledge base about APIs and changes, e.g., API documents,

package dependencies, change impacts, and related patches.
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analysis of python programs with native C extensions,” in Static
Analysis - 28th International Symposium, SAS 2021, Chicago, IL,
USA, October 17-19, 2021, Proceedings, ser. Lecture Notes in
Computer Science, C. Dragoi, S. Mukherjee, and K. S. Namjoshi,
Eds., vol. 12913. Springer, 2021, pp. 323–345. [Online]. Available:
https://doi.org/10.1007/978-3-030-88806-0 16

481


